

Course Specification (Bachelor)

Course Title:	Electromagnetic ⁻	Theory
---------------	------------------------------	---------------

Course Code: PHYS26344

Program: Physics

Department: Physics

College: Science

Institution: University of Bisha

Version: 3

Last Revision Date: 25 July 2023

Table of Contents

A. General information about the course:	. 3
1. Course Identification	.3
2. Teaching mode (mark all that apply)	.3
3. Contact Hours (based on the academic semester)	.4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	.4
C. Course Content	.4
D. Students Assessment Activities	.6
E. Learning Resources and Facilities	.6
1. References and Learning Resources	.6
2. Required Facilities and equipment	.7
F. Assessment of Course Quality	.7
G. Specification Approval Data	.7

A. General information about the course:

3

1. Course Identification

1. Credit hours:

2. Course type

3.	3. Level/year at which this course is offered: 6 th Level / 3 rd vear					
Β.	Required 🖂	Elective				
Α.	University	College 🗆	Department⊠	Track□	Others□	
		r .				

4. Course general Description

This course deals primarily with a vector-calculus based on description of static electric fields in cases of fixed charges, conductors and dielectrics. The course covers Maxwell's equation, Lorentz-force law, conservation of charge and conservation of energy. In addition, the course will discuss potentials and wave equations. Additional topics include electrostatics and magnetostatics, motion of charged particles in electromagnetic fields, and propagation and generation of electromagnetic waves

5. Pre-requirements for this course:

PHYS26342 Electricity and Magnetism -2

6. Co- requirements for this course:

NA

7. Course Main Objective(s)

Recognize the fundamentals of electromagnetic theory.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Mode of Instruction Contact Hours	
1.	Traditional classroom	3	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

No	Activity Contact Hou		
1.	Lectures	45	
2.	Laboratory/Studio		
3.	Field		
4.	Tutorial		
5.	Others (specify)		
	Total	45	

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods		
1.0	Knowledge and understanding					
1.1	Recognize the bases of vector analysis.	K.1	Loctures	Written test		
1.2	Recognize the electrostatics.	K.1	Lectures	Reports		
1.3	Recognize the magneto statics.	K.1	solve problems	Homework		
1.4	Recognize the electrodynamics.	K.1		Quizzes		
2.0	Skills					
2.1	Solve problems related to the bases of vector analysis.	S.1				
2.2	Solve problems related to the electrostatics.	S.1	Lectures	Written test Reports		
2.3	Solve problems related to the magneto statics.	S.1	Solve problems. Homewor Quizzes			
2.4	Solve problems related to the electrodynamics.	S.1				
3.0	0 Values, autonomy, and responsibility					
3.1	Exhibit self-learning skills independently.	V.2	Self-learning	Reports Presentation		

C. Course Content

No	List of Topics	Contact Hours
1.	 Vector Analysis 1. Differential Calculus The Operator∇, the Gradient, the Divergence, and the Curl. 	4.5
2.	Vector Analysis 2. Integral Calculus	4.5

	Line, Surface, and Volume Integral.	
3.	Electrostatics 1. The Electric Field Coulomb's Law The Electric Field Continuous Charge Distributions	4.5
4.	Electrostatics 2. Divergence and Curl of Electrostatic Fields Field Lines, Flux, and Gauss's Law The Divergence of E Applications of Gauss's Law The Curl of E	4.5
5.	Electrostatics 3. Electric Potential Introduction to Potential Poisson's Equation and Laplace's Equation The Potential of a Localized Charge Distribution	4.5
6.	Magneto statics 1. The Lorentz Force Law Magnetic Fields Magnetic Forces Currents	4.5
7.	Magneto statics 2. The Divergence and Curl of B Straight - Line Currents The Divergence and Curl of B Ampere's Law	4.5
8.	Magneto statics Comparison of Magneto statics and Electrostatics 3. Magnetic Vector Potential The Vector Potential	4.5
9.	Electrodynamics 1. Electromotive Force Ohm's Law Electromotive Force	4.5
10.	Electrodynamics 2. Electromagnetic Induction Faraday's Law Energy in Magnetic Fields 3. Maxwell's Equations.	4.5
	Total	45

Table: The matrix of consistency between the content and the learning outcomes of the course.

			Co	ourse Le	arning	Outcom	es		
	1.1	1.2	1.3	1.4	2.1	2.2	2.3	2.4	3.1
Topic 1	✓				✓				✓
Topic 2	✓				✓				✓
Topic 3		✓				✓			✓
Topic 4		✓				✓			✓
Topic 5		✓				✓			✓
Topic 6			✓				✓		✓
Topic 7			✓				✓		✓
Topic 8			✓				✓		✓
Topic 9				✓				✓	✓
Topic 10				✓				✓	✓

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework, quizzes, reports, and presentation.	1: 15	10 %
2.	First term exam	7: 8	20 %
3.	Second term exam	12:13	20 %
4.	Final exam	End of Semester	50 %

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Introduction to Electrodynamics, David J. Griffiths, ^{trd} edition, Upper Saddle River, New Jersey, (^Y • ^Y).
Supportive References	- Engineering Electromagnetic, W. Hayt and J. Buck, 8 th Ed., McGraw-Hill Higher, (2011).
Electronic Materials	 Blackboard. PowerPoint presentations. Digital library of University of Bisha <u>https://ub.deepknowledge.io/Bisha</u>
Other Learning Materials	NA

2. Required Facilities and equipment

Items	Resources
facilities	Classrooms, Physics lab.
Technology equipment	Data show or smart board.
Other equipment	NA

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Extent of achievement of course learning outcomes.	Teachers, students.	Direct (Final exams), Indirect (Questionnaire).
Effectiveness of teaching.	Teachers, students.	Indirect (Questionnaire)
Effectiveness of assessment.	Teachers, students.	Indirect (Questionnaire)
Quality of learning resources	Teachers, students.	Indirect (Questionnaire)
Quality of facilities available	Teachers, students.	Indirect (Questionnaire)
Fairness of evaluation	Peer reviewer.	Direct (Final exams reevaluation).

G. Specification Approval Data

COUNCIL /COMMITTEE	College of Science Council
REFERENCE NO.	20
DATE	17 August 2023

